skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Erb, M. P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The American West exemplifies drought-sensitive regions with growing populations. Paleoclimate investigations have documented severe droughts in this region before European settling, with major implications for water management and planning. Here, we leverage paleoclimate data assimilation to reconstruct past climate states, enabling a large-scale multivariate investigation of U.S. drought dynamics over the last millennium. These results confirm that La NiƱa conditions significantly influence southwest U.S. drought over the past millennium but only account for, by one metric, ~13% of interannual drought variability in that region. Atlantic sea surface temperatures may also contribute a small influence, but unexplained variability suggests a substantial role for internal atmospheric variability. This conclusion is buttressed by analysis of simulations from the Community Earth System Model Last Millennium Ensemble. While greenhouse gases will increase future drought risk, as shown in other work, interannual U.S. drought variations will also be widely influenced by processes internal to the atmosphere. 
    more » « less